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The contribution of two mechanisms of cumulation to the process of spallation 
of metal disks is studied numerically. The dimensions of the spallation zones 
are estimated and their location is determined as a function of the plastic 
and viscous properties of the material. 

The fact that waves of unloading build upon the axis of symmetry of an instantaneously heated 
cylinder was established in 1965-1966 (see [I, 2]). A more detailed investigation [3] showed 
that when the temperature in an infinite elastic isotropic cylinder with afree side su:$face 
is raised suddenly, transverse thermoelastic waves of unloading, moving toward the axi~ of 
symmetry, form. Their intensity grows in proportion to r -I/2 and at the moment of ar~:ival 
at the axis the amplitude of the waves of unloading becomes infinite. Such cumulatio;~ 
also occurs in real media, but the intensity of the waves collapsing on the axis of the cy- 
linder is, naturally, finite. 

In [4] cumulation of waves of compression was observed in an investigation of the process 
of wave formation under an axisymmetric thermal shock in disks (in a hydrodynamic forml~la- 
tion). The secondary shock wave, which is much stronger than the primary shock wave (:~nitiat- 
ed by the initial heating), formed in the process propagates along the axis of symmetry to- 
ward the free end (or ends in the case of internal heating) and, reflected from it (them), 
propagates along the medium as a longitudinal rarefaction wave. The calculations performed 
in [5, 6] for a solid deformed body confirmed these results. 

Thus both cumulation mechanisms described above ultimately lead to the appearance of 
strong tensile stresses in the vicinity of the axis of symmetry and in many cases they are 
strong enough to produce spallation. 

i. The starting system of equations describing the motion of an elastic medium fcr 
velocities and strains in a two-dimensional axisymmetric case have the form 

Op = - - ( r i p  q- l)divv, (1) 
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OS~ot --2cZ( 'r ~ 31 divv), (6) 
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Here the equation for the pressure p (i) (0 ~ r ! R, 0 ! z E H) is written using the 
equation of state p = (pn _ l)/n instead of the equation of continuity. 

In the case when the viscous properties of the materiel are taken into account terms of 
the form c2ReSi/p and c2Re~/2p are added on the right sides of the equations for the deviator 
S i and the tangential stress T (4-7). 

For elastoplastic materials the plasticity is introduced as follows. In the entire 
region of motion of the medium Mies' creep condition S~ + S~ + S~ + 2~ 2 ~ 2/3Y 2 is checked. 
This relation means that the intensity of the stresses cannot exceed the dynamic yield stress 
of the material Y. If the excess change in the stresses at some piont in the medium results 
in this inequality being violated, then each element of the deviator S i and T are multiplied 

by a correction factor ~2/3Y/~5~ 2 ~ 2 0 2 ~-Sz~-S~-~ �9 This reduction of the stresses, perpendicular 

to the circle of creep, affects only the plastic part of the stresses and is equivalent (as 
shown by S. S. Grigoryan) to the use of the Prandtl-Rice equations for plastic flow. 

The boundary and initial conditions are presented below for specific problems. 

2. The system of differential equations (1)-(7) can be approximated by a difference 
system using an explicit difference scheme of the type predictor-corrector-"leap-frog" [7]. 
An explicit method was chosen because the program was implemented on a computer with a vector 
processor (MAMO ES-1055M matrix module) and explicit schemes are structurally more amenable 
to parallel formulation than are implicit schemes, that they are better adapted to the archi- 
tecture of such machines. In addition the advantages gained by vectorization of the algorithm 
and the program significantly compensate for the time losses associated with the stringent 
restriction on the step size for integration over time (Courant's conditions). Thus the 
use of a matrix module for vectorization of the algorithm and the program reduces the com- 
puting time of a variant by a factor of 5-9 (depending on the number of points in the work- 
ing grid). 

The lqeap-frog" scheme, in the case when the intermediate layer is chosen to be at the 
center (% = 1/2, see [7]), has second-order accuracy, but as V. N. Kukudzhanov showed [8] 
taking plasticity into account using the procedure of reduction on the circle of creep lowers 
the order of the approximation, since the "correction" itself, without rescaling corresponds 
to a difference scheme with first-order accuracy. 

Two approachesare employed for numerical integration of systems of hyperbolic equations. In 
the firstapproach singularities are singled out, while the second approach is a through approach. 
The method of singling out singularities (shock waves, contact surfaces, etc.) is usually employed 
when the number of discontinuities is small, otherwise the computing algorithm becomes ex- 
tremely complicated. In dynamic multidimensional problems in the theory of elasticity (and 
elastoplasticity), however, the number of discontinuities is large and increases rapdily as 
a result of the reflection of waves from boundaries and interaction with one another. For 
this reason the through method of computation is more efficient for solving these problems. 
The main drawback of this method is that nonphysical oscillations arise in the vicinity of 
discontinuities. To damp these extraneous oscillations and to intensify the stabilizing 
properties of the scheme a smoothing operator of the Book-Boris monotonizer type, proposed 
in [9], is employed. 

3. One of the most efficient methods for checking the accuracy of the solution and 
finding possible errors in the program at the debugging stage is compare with the exact solu- 
tion the results of the numerical solution of a problem that can be solved analytically. 

For problems in mathematical physics the existence of such a test is extremely rare 
and for this reason it is of great value to anyone performing computations. Here we were 
able to find such a formulation to test the numerical procedure, the algorithm, and the 
program. In addition, the efficiency of the matrix module was checked for the same test 
problem. 
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Fig. I. The time dependence of the pressure p(t) at points 
on the symmetry axis. p, GPa; t, psec. 

Fig. 2. The boundaries of the regions of spal!ation of the 
material under a local thermal shock: a) at the center of 
the disk, b) at the end. Z, r, mm. 

So, we are solving the problem of cumulation of waves of unloading. This problems has 
an analytical solution [2]. Let a constant stress appear initially (for example, as a result 
of instantaneous heating) in an infinite cylindrica& region with radius R i in a linearly 
elastic (n = i)isotropic medium. Then the starting wave equation has an exact solution 
on the symmetry axis of the cylinder [2]. For example, for the pressure this solution aas the 
form 

p (t) = P o  for t < R---!-~, 
C.t 

[ i )] 
3 1 - - v  1 - - 2 v  \ l--~-~it ] 

for t> Ri 
El 

where P0 is the initial pressure. 

As t ~ ~ the pressure approaches the static solution: 

2 1 - - 2 , :  
p~ = l i m p  (t) = ~ Po 

t - ~  ~ ,  I --%' 

The same problem was solvednumerically using the method described above. In Fig. 1 the 
exact solution (solid curve) is compared with the numerical solution (dot dashed curve). As 
the calculations showed, the solutions P(t) differ only in the vicinity of the singular' point 
of the exact solution (t = Ri/Ci); this is understandable, since owing to some smoothirlg in 
the initial conditions and the existence of grid viscosity the numerical solution does r~ot 
have a singularity. 

In addition, the solution for the intensity of waves of unloading at the stage of the 
initial collapse was checked. As established in [3], the increment to the amplitude ir~ the 
jumps of rarefaction Ap is proportional to r -i/2. 
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TABLE i. Check of the Law of Increase of the Amplitude 

r/R, 

0,9 
0,75 
'0,6 
0,45 
0,3 
,0,15 
,0, I 

0,9487 
0,866 
0,7746 
0,67082 
0,54772 
0,3873 
0,31623 

P, GPa 

0,8371 
0,7558 
0,6531 
0,51264 
0,27193 

--0,40724 
--0,41061 

Ap, GPa 

O, 7724 
O, 8537 
0,9564 
1,06989 
i, 33760 
2,01677 
2,02014 

Ap/hp, 

1,105 
1,238 
1,42 
1,7317 
2,611 
2,615 

(r/rO-I / 2 

1,095 
1,225 
1,414 
1,732 
2,45 
3 

% deviation 

0,91 
1,06 
0,45 
0,02 
6,57 

12,8 

In the table r/R l are the values of the relative coordinate of the wave of unloading, 
p is the amplitude of the wave, A is the increment of the amplitude compared with the initial 
value 1.60953 GPa, Ap/Apl is the ratio of the increment to the intensity of the wave for dif- 
ferent values of the radii r/R1 and the increment at rl/R I = 0.9, (r/rl) -I/2 is the cor- 
ordinates to the power -1/2, and the relative deviation in percent from the ratie Ap/BpI = 
(r/rl)-i/2 :is given in the last column. 

As one can see from Table i, for radii r/R1 ~ 0.3 the indicated ratio holds to within 
1%, for r/R1 = 0.15 the deviation is equal to 6.57%, and for r/R I = 0.1 the deviation is 
equal to 12.8%. These deviations occur for the same reasons: the starting "smearing" of the 
wave and the grid viscosity. 

The calculation of this test problem in order to determine the speed up of the calcula- 
tion with the use of the vector processor was performed on grids with 37 • 51, 76 • i01, and 
151 x 201 nodes. The obtained results of the comparison of the computing times for these 
variants using programs employing and not employing a matrix module are as follows: the 
spped up factor is equal to about 2 on the 37 • 51 grid, 6.7 on the 76 • 101 grid, and 9.2 
on the 151 • 201 grid. The maximum speed up of the calculation was obtained, naturally, with 
the larger number of nodes; this indicates that the matrix module is highly efficient for 
complex problems, in which a numerical investigation is possible 0nly on detailed grids. 

4. We are studying the problem of wave formation, growth in damage, and development 
of spallation zones in metal disks under a thermal shock. The thermal shock is produced by 
instantaneous heating of the local cylindrical zones, coaxial with the disk, at the surface 
of the disk, or in the disk. In the first case the physical process of heating of the sur- 
face with a laser pulse is modeled and in the second case an internal zone is heated with a 
electron beam. 

This physical problem can be formulated mathematically as follows: find the functions 
v, p, S i, �9 in the region G(O E r ~ R, 0 ~ z < H). which satisfy the system of equations 
/(1)-(7) and the initial conditions 

V ---- S~ ~--- �9 = 0 in  the region G, p = 0 in  G/Go, 

p = p o > O  in  Go(O<~r<rl, hl<~z<~h2) 
(8.) 

and the boundary conditions 

S ~ = p = ' ~ = O  if r = R ,  O~z~<H, 

S~=p=x=O if /z=O, O<~r~R, 
z=H, O~r~R,  

u=-c=O if r=O, O<~z<~H. 

(9) 

The problem (1)-(9) formulated above was solved for aluminum disks with the following 
values of the parameters: R = 2.5"10 -2 m, H = 2 • 10 -2 m, C I = 5500 m/sec, p = 2700 kg/m 2, 
n = 3.5 (i.e., the spherical part of the stress tensor depends nonlinearly on the density, 
n # i). We studied the elastic (Y + ~, Re = 0), elastoplastic (Y = 0.12 GPa, Re = 0), and 
elastoviscous (Y + | Re = 70) models of the disk material. 
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F ig .  3. The d i s t r i b u t i o n  o f  i n t e g r a l s  o f  damage I ( z )  a long 
the axis of symmetry with a local thermal shock at the center 
of the disk for different times (curves 1-4 are for an elastic 
material and curves 5-6 are for an elastoplastic material). 
I, Pa.sec, z, cm. 

Fig. 4. The final distributions of the integrals of damage 
I(z) along the axis of symmetry with a thermal shock at the 
center of the disk and at the ends for different mechanical 
properties of the material. 

The zone of heating G o is chosen to be small compared with the region G: [0, r I] = 2.5 ~ 
i0 -~ m, [hz, h2] = 2"10 -3 m; in the first case it lies on the surface of the disk and :n the 
second case it lies in an interior region at the same distance from both ends. The starting 
pressure produced by the heating is P0 = 5 GPa. 

Investigation of the spallation of bodies is connected with establishing an adequate 
criterion for fracture. In this work, in modeling the process of dynamic fracture numerical- 
ly we employed the continuum theory of damage. The criterion of fracture in this case is 
a damage integral of the following form [4]: 

t 

I = y ]pl exp [(IPl--Pl)~] d~. (10) 
0 

P h y s i c a l l y  t h i s  c r i t e r i o n  co r r e sponds  to  t a k i n g  mic ropo re s  i n t o  accoun t  in the  waves oi  un- 
l oad ing  and the  growth o f  t h e s e  pores  to  some c r i t i c a l  va lue  I c r  ( f o r  aluminum I c r  = 1220 
Pa.sec). We note that the summation in Eq. (i0) is performed for p < and [p[ > Pz (here 
Pl = 0.176 GPa, P2 = 0.21GPa). 

5. We shall now discuss the results. First we shall study the case of a thermal shock 
in a local region at the geometric center of the disk. A strong electromagnetic pulse pro- 
duces practically instantaneous (t < 10 -8 sec) heating of a cylindrical region. Initially 
a wave of unloading and a wave of compression start to move, respectively, toward the a~is 
of symmetry and toward the side surface from the side boundary of this zone. Like in the 
case studied in Sec. 3 as the waves approach the axis of symmetry (by the time t = 0.45-0.5 

psec) the amplitude of the waves of unloading increases rapidly, reaching values of 3-4 SPa 
in modulus, much higher than Pl = 0.175 GPa in the formula (I0). As a result of this damage 
starts to accumulate in the vicinity of the symmetry axis near the zone of the thermal ~hock. 
The procces of collapse and reflection of waves of unloading from the axis lasts much longer 
in an elastoplastic medium than in an elastic medium, because the velocity of propagation 
of the elastoplastic wave is lower and therefore the process of damage cumulation lasts longer. 
This time interval is sufficient for the integral (i0) to reach a critical value in a rela- 
tively large zone in a neighborhood of the 0z axis in a disk of elastoplastic material, i.e., 
approximately bythe moment 3.3 psec spallation of the material occurs in a region encompass- 
ing the zone of heating and a cavern forms. In Fig. 2, where the lower half of the plane of 
the section r0z is shown, the curve 2' indicates the lower boundary of the region of spalla- 
tion as a result of the action of the first mechanism of cumulation in the elastoplastic case 
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up to the moment t = 3.3 ~sec (the cross-hatched rectangle at the top of the figure is the 
bottom half of the zone of heating). The process of spallation occurs analogously, but less 
intensively, in an elastoviscous material (see curve 3 in Fig. 2a). Since the distances 
over which this process occurs are short (of the order of millimeters) the dissipation of 
of energy owing to viscosity is negligible. The viscosity has virtually no effect on the 
amplitude of the waves of unloading, but is it nonetheless "stretches out" the characteristic 
time of reflection as compared with the case of an elastic material and therefore the damage 
cumulation time. In an elastic medium, however, where the arrival of the wave of unloading 
at the 0z axis and its reflection occur more rapidly, there is not enough time for integral 
(I0) to reach the critical value (see curve 1 in Fig. 3, which shows the distribution I(z) 
along the axis of symmetry for t = 5.7 ~sec) and spallation does not occur. The figure 
shows only half of the graphs, since they are symmetric relative to the central section. 

Further development of the wave-formation process occurs as follows. Some time after 
the reflection of the wave of unloading a secondary cumulation shock wave is generated in 
a zone near th~ axis of symmetry; the amplitude of this shock wave is much higher than the 
amplitude of the primary wave, initiated by the initial heating. A compression wave generat- 
ed by cumulation moves toward the free ends of the disk and is reflected from them by in- 
tense waves of unloading. In an elastic material the amplitude of these waves is greater 
than Pl, while in elastoplastic and elastoviscous materials it is less than Pl. Thus, as 
the waves of unloading move away from the free ends of the disk toward the center in the 
first case spallation occurs (see curves 2, 3, and 4 in Fig. 3, corresponding to the times 
14, 24, and 33 Dsec), while in the other cases the spallation does not occur. 

Further, an accompanying collision of these waves of rarefaction occurs in the central 
section of the disk; as a result of this collision more intense waves of unloading, propaga- 
ting toward the ends, are formed. In an elastic material they result in the formation of 
a spallation zone in the central region and in some increase of the zones of spallation at 
the faces (see curve 1 in Fig. 4 (t = 33 Dsec) as well as curve 1 in Fig. 2a). In an elasto- 
plastic medium in medium intense diverging waves of unloading significantly increase the 
volume of the spallation cavern (compare curves 5 (t = 5.7 ~sec) and 6 (t = 3 Dsec) in Fig. 
3 and curves 2' and 2 in Fig. 2a). Additional fracture does not occur only in the elasto- 
viscous medium (the spallation zone remains bounded by the curve 3 in Fig. 2a). This con- 
firms the results of previous studies [5], showing that at distances of the order of centi- 
meters in viscous media dissipation significantly weakens the wave processes. 

Thus the numerical experiment shows that under conditions of a thermal shock in a local 
central zone the cumulation effect as a result of collapse of transverse waves of unloading 
in an elastoplastic and eleastoviscous media results in spallation of the material near the 
region of heating. In addition, in the latter case, the damage process is limited to this. 
In elastic media longitudinal waves of unloading, formed as a result of reflection of a 
secondary compression wave generated in the acumulation process, fromthe faces make the main 
contribution to the damage in the material. They more than double the volume of the spalla- 
tion crater in an elastoplastic medium. In addition, and what is most interesting, in a 
"purely" elastic medium the thermal shock in a local zone around the center results primarily 
in endface spallation. 

Next we study a thermal shock at the front face. In all three materials at the earliest 
stage (up to the moment t = 2 ~sec)spallation at the front face occurs as a result of the 
collapse of the side waves of unloading and the action of the rarefaction wave from the front 
face (see curves i, 2, 3 in Fig. 2b; the cross-hatched rectangle is the zone of heating). 
For elastoviscous and elastoplastic media the damage~process ends here. For an elastic 
material the spallation zone at this stage is smaller than for an elastoplastic material 
(compare curves i' and 2 in Fig. 2b) because the collapse is more rapid, but in contradistinc- 
tion to the case of heating of the central zone it nonetheless occurs. This is explained 
by the action of the additional wave of unloading from the front face. 

Next, the wave formation and damage processes occur analogously to the case studied. 
In an elastic material a secondary wave with quite large amplitude is formed; the wave is 
reflected from the back face by an intense longitutinal wave of unloading. It leads to ad- 
ditional damage to the medium at the front face, thereby significantly increasing the volume 
of the spallation crater (compare curves i' and 1 in Fig. 2b and curves 3 and 4 in Fig. 4). 

Analysis of the computational results shows that in the case of heating of a local zone 
at the end of an elastic disk the cumulation of a secondary longitudinal wave of compression 
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makes the main contribution to the process of spallation damage, while in elastoplastic and 
elastoviscous materials all damage occurs with cumulation of transverse waves of unloading. 

NOTATION 

t, time; r, z, cylindrical coordinates; v = (u, v), velocity; p; density; p, pressure; 
Si, components of the deviator of the stresses; T, tangential stress; n, constant in the 
equation of state; ci and c2, longitudinal and transverse velocities of sound; c = cl/c2; P, 
coefficient of dynamic viscosity; Y is dynamic yield stress of the material; ~, Poisscn's 
ratio; Re, Reynolds number; R and H, radius and height of the disk; r I and h, radius and 
height of the heated region; G, computing region; Go, region of heating; A, coefficient in the 
difference scheme. 
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